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A procedure, based on double coset decompositions, is described for reducing 
formulas for derivatives (with respect to nuclear coordinates) of integrals over 
symmetry-adapted orbitals to symmetry-distinct integral derivatives over 
atomic orbitals. The procedure is applicable to any finite point group and to 
integral derivatives of any order. 
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1. Introduction 

The transformation of two-electron integrals from an atomic orbital (AO) to a 
molecular orbital (MO) basis is, formally, one of the most time-consuming steps 
in beyond-SCF calculations: its N 5 behavior (for N orbitals) has the highest 
power dependence of any step in the calculation, at least if the CI expansion is 
of single and double excitation type. Consequently, the exploitation of symmetry 
in the transformation is of vital importance in reducing the computational labor, 
which then behaves as N~,  where Nm is some average of the number of  functions 
of each symmetry species [1]. Even one element of symmetry can effect an order 
of magnitude reduction in the total labor. Most commonly, this exploitation of 
symmetry involves the generation of integrals over symmetry-adapted orbitals 
(SO) as an intermediate step, using a list of  symmetry-distinct AO integrals [1-4]. 
The transformation is then carded out from the SO basis to the MO basis. It is 
also possible to consider a scheme which bypasses the explicit generation of SO 
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integrals, going directly from distinct AO integrals to MO integrals but retaining 
the advantages of symmetry blocking [5-7]. Whether SO integrals are formed 
explicitly or not, formulas for generating them from distinct AO integrals are 
required in developing a computational scheme; such formulas have been devised 
by a number of authors [2-4], but the most convenient and most elegant formula- 
tion is that of Davidson [3]. The latter work is based on double coset decomposi- 
tions (DCD) and it is this approach that we shall follow in the present work. 

While the symmetry processing and transformation of integrals has been explored 
in detail, there has been much less discussion of the transformation of integral 
derivatives. Integrals differentiated with respect to nuclear coordinates are 
required in "analytical derivative" schemes for computing molecular properties 
such as gradients and force constants (see, e.g. [8-11] and references therein). 
In many applications [8, 11-14], MO integral derivatives appear contracted with 
reduced density matrices in expressions which can be represented in a simple 
way as 

E E • E epqrs[pq]rs]' (1) 
p q r s 

where the prime on the integral indicates differentiation (not necessarily only to 
first order) and P is the second-order reduced density matrix. The sum in (1) is 
over MO indices. Transforming P into the AO basis gives 

By this means it is possible not only to avoid transforming the integral derivatives 
but also, by rewriting (2) in terms of distinct AO integral derivatives only [14], 
to avoid having to consider explicitly their symmetry properties. This procedure 
is described in detail in [14]. Obviously, this approach can also be used in cases 
in which P is a direct product of first-order reduced density matrices, as in SCF 
or GVB methods [15]. 

In expressions for more complicated cases, however, such as those which deter- 
mine perturbed MCSCF or CI wave functions [11], terms such as 

Rpq = ~ ~ ~ Perst[qr]st]' (3) 
r S t 

arise. This is obviously not the simple index contraction above, and it is not 
possible to approach the construction of R, say, in the straightforward manner 
of [14]. Indeed, it has recently been suggested [11] that there will be little 
alternative to transforming integral derivatives to the MO basis. As a consequence 
it is desirable to derive formulas for symmetry-adapted integral derivatives, that 
is, SO integral derivatives, in order to reduce the transformation labor as outlined 
above. 

In order to achieve maximum simplicity in the formulas for SO integral derivatives 
we shall employ symmetry-adapted nuclear coordinates. It is simple to obtain 
final quantities, such as gradients or force constants, etc. in terms of the original 
nuclear coordinates if other computational considerations should require it [ 16]. 
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In the following section we define a number of terms and discuss how SOs are 
generated from AOs and how differentiation operators act on AOs. In Sect. 3 
formulas for one- and two-electron integral derivatives are derived in terms of 
distinct AO integral derivatives for any (finite) point group. In Sect. 4 these 
formulas are rewritten explicitly for the special case of D2h and its subgroups: 
a number of programs restrict treatment of symmetry to these groups because of 
the many simplifications which ensue. Application of the methods of this work 
to higher derivatives is considered in Sect. 5 and conclusions are given in Sect. 6. 

2. Definitions 

In order to take maximum advantage of Davidson's work on SO integrals [3] we 
will use the same notation as far as possible. !~ denotes the molecular point 
group, which is restricted to be finite (of order I~l = g) with elements G. For 
each nucleus A, B, C . . .  in the molecule there exists a subgroup of Ig, denoted 
a//, ~, oW... such that, e.g. 

U_rA = _ray U ~ 0~ (4) 

where ra is the position of A. Such a subgroup is termed the stabilizer of A [17], 
the order of  the subgroup is denoted u. 

The AO basis is assumed closed under fg (this is invariably the case in practice) 
and each AO is then taken to be centered on a particular nucleus. The extension 
to AOs off the nuclear centers but "following" [8] (i.e. moving rigidly with) 
particular centers is straightforward. The AOs are assumed to be Cartesian or 
spherical harmonic Oaussian or Slater functions (that is, a product of a locally 
spherically symmetric radial function and some angular part). The ath AO on 
center A is denoted faa; the assumption of closure under !~ implies that faa 
transforms as 

Uf~a = E Caaa( U)faa, U ~ ~ (5) 
v 

and 

GfoA =• CaaA(G)faG(A), G E ~ (6) 
G 

where G transforms A into G(A). Each faa is an AO with the same radial part 
as faA  but possibly with different angular properties. For future reference we note 
that if ~ is D2h or one of its subgroups CaaA(G) becomes a parity factor which 
depends only on the angular type of the AO, not on its center, and can be denoted 
Pa(U) (= :t: 1). This differs from the notation used by Davidson [3], which appears 
to imply A dependence (not a dependence) of the parity factors. 

SOs are generated from f,A by applying projection (Pi~') and shift (Pi~) operators: 
Ot ~ P,  = g - i n ,  ~. D , ( G )  G, (7a) 

G 

P~ = g-l n,~ ~. D'~( G)* G. (7b) 
G 
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Here D ~ is one of  a set of  unitary irreducible representation (irrep) matrices for 
irrep a and n,  is the dimensionality of~.  By operating with (Ta, b) onfaA we obtain 

FaAair = P,~f~ (8) 

where the SOs of  species (a, i) are chosen as a linearly independent subset of 
the Faaair (often by simply fixing on a particular r). 

We introduce the double cosets ~ G ~  r for two subgroups q/ and 0//" and G ~ ~d 
[3, 18, 19]. Double cosets partition ~ into disjoint sets of  elements - a double 
coset decomposition (DCD) [19] - in which each element occurs a fixed number 
of  times (not necessarily only once, as in single cosets) for a particular G. This 
degeneracy is given by 

A~ = lall n G~ (9) 

which is the order of  the subgroup 0//c~ G ~ G  -~, the stabilizer of the pair of nuclei 
A and G(B) .  That is, any element of  a//n G ~ G  -~ leaves both A and G(B)  fixed. 
A set of  double coset representatives (DCR) [19], denoted R, consists of  a set of  
operators R chosen one from each distinct double coset: with each R ~ • there 
is a different degeneracy factor AR given by (9) with G = R. Sums over group 
elements G can be replaced by sums over elements of stabilizers and DCR, as in 

P~ = g-~n,, ~ ~. ~. A R~D~( UR V)* UR V. (10) 
U V R  

Here and in what follows a sum over R indicates a sum over elements of a 
particular set of  DCR ~. 

AO integral derivatives involve differentiation of AOs (or of  operators) with 
respect to particular nuclear coordinates XA, YA, etc. Denoting the Cartesian 
direction by cr we use the symbol 0,,B, defined as 

0,,E = 0/0o-~, (11) 

as a convenient shorthand for the differentiation operator. Such operators are 
given in symmetry-adapted form as 

O,~E~,~v = g-~ n~ Y. D~o( G)* GO,,EG -~, (12) 
G 

where 0~E,,~o behaves as an irreducible tensor operator of  symmetry species (e, m) 
[20]. A set of  partner operators for this species is obtained by selecting a linearly 
independent subset of  the 0,,E~m~. Note that 

Gc3~,E G-1 = ~ Cao-E ( G)OaE. (13) 
6" 

Now 

a~,Efaa = ~AEtgo.AfaA 

= CSa~f~A (14) 
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using f~A for 0~afaa- Hence 

O,~E~mvGfaA = g-lne E D~(H)*HO~EH-~Gf~A 
H 

= g-ln~ ~ D~(GH)*GHO,~EH-~f~A 
H 

= g-~n~ ~, ~ D~(G)*D~(H)*GHO~EH-~f~A, (15) 
Hr~ 

using the rearrangement theorem [20] to replace H by GH in the sum over H. But 

HO~EH-IfoA = 0, unless E = A and H ~ 0//, (16) 

hence 

O~e~,~Gf~A = 6Aeg -1 n~ Y~ ~ ~ D ~ (  G)* D ~ (  U)* C~A( U) Gf~A. (17) 

For future use we define 

Aae _ -1 e ,~o-,~o-g n, E D,~(U)*Cao-A(U), (18) 
U 

using which 

D,,,~( G) a~,~Gf~a. (19) 
O rYl 

Equation (19) and the use of  the rearrangement theorem will play a key role in 
the elaboration of formulas for SO integral derivatives. The differentiation of 
one-electron operators which depend explicitly on the nuclear coordinates is 
considered below. 

Finally, by analogy with (18), we define for future use 
A a  Aa,~rr( G) = g-~ n,~ ~, D~-r( GU)* CaaA( GU ) (20) 

U 

and 

AR_(B)0rr-,~ _ bbis ~ ,., j -- g-~ n~ ~ D~( GR VR-~)* C~bR(n)( GR VR-~). (21) 
V 

In (21) the sum over V in RVR -~ generates elements of R ~ R  -~, the stabilizer 
of  R(B). 

3. Derivatives of SO integrals 

We first consider the simplest case of integrals over a one-electron operator which 
does not depend on the nuclear coordinates. Without loss of  generality we can 
restrict treatment to symmetry-adapted operators O~kt which transform as irreduc- 
ible tensor operators of  species (% k). Differentiation of the SO integral 

(F~,~,, I Ovkt I FbB~.is) (22) 

gives 

-t- ( FaA~irl O~,kt [O~E~,,,vFb~t3js) (23b) 
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We shall proceed by expanding the SOs in (23) in terms of distinct AOs and 
then differentiating. The same results could be obtained by differentiating the 
SOs and then expanding, of course, but then the algebra becomes somewhat 
more complicated. Following Davidson's treatment [3] for integrals over 'non- 
symmetric operators' this gives for (23a) 

g-l n,~ ~ D,~( G)(O,~,,,vGf~AlOvk, lGG-' Fbst3js) 
G 

ot fl - 1  = g-'n,~ • Z Dir(G)D:j(G )(&m~moGfaAlO~,ktlGFbBms) (24) 
Gj 

Using a DCD we have 

FbBm, = g-lnr ~ • Y. AR1Dfs(U-'RV) * U-1R Vfbn, (25) 
U V R  

where we have replaced U with U -1 in (10). Substituting (25) in (24) gives 

g-2 n,~n~ ~ ~ ~ ~ ~ D'~( G)D~( G)* A R1D~,( U-1R V) * 
G U V R  3 

x (O,m~m~Gf~AlO~,k, lGU-IRVfbs) (26) 

Using the rearrangement theorem [20] to replace the sum over G everywhere in 
(26) by GU gives 

g-2n~,nt3 E E E E E D'~(GU)D~(GU)* 
G U V R  ] 

x A-g1D~( U -1R V)*(Oo-~m,,G UL_AI O~,ktl GR VfbB) 

-'- g-2n~n~ ~ ~. ~ ~. E ~ A RI D~-( G)D~r( U)D~( G)* D~s( RV)* 
G U V R  r j 

x CaaA(U) C~bn (R V)(oo-E~vGfaa [Ovkt ]Gf~g(m) 
= Z Z E E E  -1 , . .  AR (Aa,,rr) A~bi,(R) Z D~-(G)D~(G)* 

R a b i j  G 

x (O,,~,,,~,GfaAI Ovk~lGf~R(m), (27) 

using (18) and (20). But from (19) 
Ae * - (O,~EemvGfaa[OvktlGf~R(n)) = ~ A E  E E Dma,( G)(Ae~o-ff, v) ( Gf~aA[O.rkt[Gf6R(n)), 

(28) 

giving for (23a) 

~ A E ~ , Z Z Z Z Z  2 --1 Aot * B,~ Ae * _ AR (Aa~rr) A6by, (R)(A~)  
R ~- .T ~ ~ b ~ 

• E D~(G) D~( G)*D~n,~ ( G)( Gfa~A[ Ovk, I GfsR(m). (29) 
G 

N o w  

( Gfa~l Org, l GJ~R(m) = (fL[ G -I O~k,GljbR(m), (30) 
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and 

G-l OvktG= ~ Dkr~( G-~)*Ov~, (31) 
k 

by definition [20], so by substituting (30) and (31) into (29) we obtain 

a ~ E E E E E E E E  - '  ~"  * "~ ~" * ;tR (Aa~r~) A~bi~(R)(A6"o~) 
R ~ y 'E aa a ~ 6- 

a 18 * ~' e 6" x ~ D,r( G)Djj( G) Omm( OlO~k( Gl(fjAlO,~,lfSR(m). 
G 

(32) 

Following a similar procedure for (23b) gives finally 

O~E~,,w(f aa,~irlOvktlFbB/sjs) 

E E E E E E E Y .  - '  ~ �9 .8 = x .  (A~o~r) A ~ b j , ( R )  

x E D~,-( G)D~( G)* D}k( G) 
G 

Ae , 6" 
X { ~ A E D m m ( G ) ( A 6 " . ~ o )  (faa] O~,~tIfgR(B)) 

e * R(B)e 6" 
+ ~ R ( B ) , E D m m ( G )  A6", .~  ( faAlOygtl f~R(B))  ( 3 3 )  

for the derivative of an SO integral over an operator independent of the nuclear 
coordinates. Evidently, the sum over G of the product of representation matrix 
elements in (33) gives "selection rules" on the SO integral derivatives. For 
example, in the common case of y the totally symmetric irrep a | e must contain 
/3 (whereupon/3| contains a) for (33) to be non-vanishing. 

In practice, the "translational invariance" of AO integrals (and their derivatives) 
[12, 13, 21-24] is used to reduce the number of integral derivatives that must be 
calculated. For (33) this means exploiting the relationship 

(fffA[ Ov'2tlfgR(B)) + (f~l O~ktlf~R(B)) = 0.  (34) 

involving the two AO integral derivatives. 

The case of an operator which depends on the nuclear coordinates is somewhat 
more complicated. Instead of O~,k, we consider an operator Oc~,kt which is of 
symmetry species (% k) and is constructed from operators on nucleus C (and 
its transforms G(C)) according to 

Ocvkt = g-in v E D~t( G)*GOcG -1. (35) 
G 

is the stabilizer of C. In 

c3 ~Eemv ( FaAair I Ocrkt  ] FbB/Sj, ) 

= (O ~E~ mvFaAair [ Oc'~kt I FbB/8:,) + ( FaAc~ir I Ocvkt  I c9 tree mvfbB/8js ) 

"t- ( FaAairlOo_VemvOcvktlFbnl3js), ( 3 6 )  
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the first two terms on the RHS may be handled by the technique used above for 
the operator Orkt. The third term is expanded by noting that 

O,~mvOcz, k, = g-2 n~,n~ ~ ~ D~.( H)* D~v( J)*JO,~EJ-1HOc H-1 
H J 

= g-2nvn~ • Z Z D~.(H)*D~,n(H)*D~v(J)*HJO~J-IOc H-l" 
I - I J n  

(37) 

Clearly, the operator product JO~J-lOc vanishes unless C = E and J~  7g', so 
that (37) may be rewritten as 

3cEg-2 nz, n~ E Y~ Y~ Y. DT.(H)*D~.(H)*D;~( W)*• C6.,~c( W)HO~H -1 
H W n  6- 

Okt(H) D~,(H)  A6.~,,HOcH , (38) = Sc~g-l nr Y. Z Z ~ . ~ . c~ ~ -1 
H n f f "  

using the notation O~ for 00 /0~o  If (38) is inserted in the third term of (36) 
and the SOs are expanded as above we find 

( F a a a i r [ O o - E e m v O c 3 & t  ] V b B l 3 j s )  

--1 Act . Bt3 c~ D~(G)D~(G)* = 6c~g-lnr Z 2 E E Z Z Z AR (Anat.) Aab~(R)a6.~.,,v x 2 

• E DL(H)*D~,(H)*(Gf~A]HO~H-'I Gf6R~B~). (39) 
H 

This expression may be simplified further by replacing H with GH giving 

As (Aa~) AEbi~(R)A6.~.~ ~c~g-ln~,Zy. Z y Z E Z y . ~  -1 A,~ . Bt~ c~ 
R ~  y k r h n K 6 ~ "  

x Y D~-( G) D~( G)*D~r,( G)*D~,~( G)* 
(9 

3~ , ~ , 6" - 1  • Dk,(H) Da, n(H) (faalHOcH If6Rr (40) 
H 

Note that if desired this form could be rewritten in terms of a symmetry-adapted 
differentiated operator transforming according to row/~r~ of the direct product 
representation 3'@ e. 

If (40) is combined with the appropriate form of (33) to give the result of 
differentiating the SO, we finally obtain 

GE, m~( F.A~,~IOc~k, IFb.~j.) 

An (aa.~,) a~bs.(R) _ _ _ g - l n v ~ Z 2 Z Z ~ Z  -1 A,, , B, 

•  D~(G)D~(G)* 

• {6A~D~k(G)*D~,,~(G)(AA~-r~.) * ~ D[,(H)*(f~IHOcH-I[fgRr 
14 

Z * e , R ( B ) e  

14 

A6.~.~ E DL(H)*D~.(H)*  + 6cED~(G)*D~,~(G)* E c~ 
n H 

X (faaInO~H-11fgR(B)). (41) 
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Transformed operators HOH -~ feature in (41) and (implicitly) in (33). In general, 
some AO integral derivatives generated by the sum over H will be redundant. 
Such redundancies can be eliminated, following Taylor [6], by replacing the sum 
over H with a DCD involving 7//" (the stabilizer of C), A/c, the stabilizer of the 
pair (A, R(B)), and a DCR set T. This is straightforward and will be omitted 
here, although it is of interest to point out that for O independent of the nuclear 
coordinate ~ = cg and the sum over elements of DCR qg reduces to a single term, 
which is conveniently taken to be the identity operator. 

The use of translational invariance is somewhat more complicated for integral 
derivatives involving Oc~,kt. The appropriate relationship is most easily obtained 
by considering the translational invariance of the AO integral 
( H-l  faal Oc [H--I f6R(B)), giving 

C,~,,c( H)*(f~AIUOcH-~lf 6R(m) + ~ Ce,,c( H)(faAIHOcH-1lfffR(m) 

+ (faAInO~H-1lf~g(m) = 0. (42) 

By using (42) it is possible to avoid explicit calculation of matrix elements of 
the differentiated operator O~. This is especially convenient when Oc is of 
complicated algebraic form (such as certain pseudopotential operators). Note 
that in any computationally efficient procedure for generating AO integral deriva- 
tives all three Cartesian directions cr would be handled together, so all contribu- 
tions that might arise in the first two terms of (42) would be available simul- 
taneously. 

A two electron integral (over the totally symmetric operator r~ )  over SOs is 

[ FaAairFbBl3js [FccvktFdDalu ], (43) 

using charge density notation. Differentiation gives four terms: 

+ [ F,,A,~,,O~E,,,,,,FbBI3j~IF~c~,k,Fa;:,~,~,] 

+ [FaA.,.FbB~j~IF~crk,O~E .... FdDa;~]. (44) 

If we expand the SOs in terms of distinct AOs [3] we obtain 

--1 Aa :~ BI3 CT_ ~ D8 EEEEEEEEEEY,x~ (Aao~,) A~bj~(R)(A~k,(T)) Aadr~,(TS) 
R S T a b g d  r ~ V k T -  

D,,( G)D~i( G) Dkk( G)D,r( G) 
G 

X {[O~e~mvGfaAGf6R(B)lGfer(c)GfaTS(D)] 

+ [ GfaAO~E~m~GfER(R)I Gf~r(c) Gf~rs(D)] 

+ [ GfaAGfc, g(B)[O~E~Gfer(c)Gfjrs(o)] 

+ [GfaAGf~R(mlGfer(c)a~,e~Gfjrs(o)]}. (45) 
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Here R c •, a set of DCR for subgroups q/ and ~ S ~ 5,  a set of DCR for ~gf 
and ~f (stabilizers of C and D respectively), and T e ~, a set of DCR for subgroups 
~R and  Ns, stabilizers of the pairs (A, R(B)) and (C, S(D)) respectively. Using 
(19) the four terms in braces in (45) can be written as 

e A e  ~ @ - v~ E {6a~Dmrn( G)(Aoo-rnv) [ Gf,~aGf~R(B)lGf~T(c)Gfers(o)] 
ff, l 6" 

e :~ R ( B ) e  5" + ~R(m,eDm~,(G) ar"~ [ Gf~AGf~R(m] Gf~r(c)GfaTs~D)] 
e T ( C ) e  :~ ~ + `3T(C),eDm,~(G)(Ae~ ) [GfaAGf~Rca)lGf~r(c)GfeTS(D)] 

e . T S ( D ) e  6- + 6rs(D),~D~,~(G) Ar"~a,~ [GfaAGf~g(B)lGf~r(c)Gfjrs(o)]} (46) 

The operation of G in the integral derivatives is simply to transform all four 
functions appearing in the integral simultaneously, and thus leaves the value of 
the integral unaffected. Eliminating these operators and substituting (46) into 
(45) gives 

Oo-E~m [ FaAo, i,FbBoj, lF~c.~k,Fdo~,, ] 
_ _ ( A A ~  ~,* 

R S T  a b e d r " r f k l r ~  

B.8 C ~  • A ~bi, (R)(A e~kt( T))* ADS-. (TS) 

x ~ D~(G)D~(G)*D~.(G)D~r(G)* 
0 

"~- T ( C ) , E  m r ~ t  ] k  6"trrhv ] L J a A J g R ( B ) I J e T ( C ) J d T S ( D ) J  

+`3 D" ZG~*A Ts(D)`rr "~ I~ r at (47) 
T S ( D )  m ~ \  ) 6"o'ffav L J ~ A J F ~ R ( B ) I J ~ T ( C ) J d T S ( D ) I J "  

Alternatively, (47) can be obtained by applying G-~ to the four integral derivatives 
in braces in (45), followed by expanding as in (46). 

In both the one- and two-electron integral derivatives we have tacitly ignored 
the possibility that {f~A} = {fb~}, etc. In such cases the stabilizers can be expanded 
and the set of DCR required in a given case can be decreased. Full details are 
given by Davidson [3]. In addition, the number of independent integral derivatives 
is reduced by translational invariance [12, 13, 21-24]: the sum of the four AO 
integral derivatives appearing in the expression in braces in (47) is zero. Of 
course, the number of independent terms is reduced even further when nuclear 
centers coincide [21]. Clearly, the use of translational invariance to reduce the 
number of independent terms to be computed fits very simply into the symmetry 
treatment, just as for the one-electron cases discussed above. We have not 
considered additional savings arising from exploitation of rotational invariance 
[22-24], as this would introduce considerable complications - it should be noted, 
however, that in practice rotational invariance is usually invoked after derivatives 
have been contracted with reduced density matrices [23]. 

The final derivative expressions, (33), (41) and (47), may appear somewhat 
forbidding - this is hardly surprising given that the expressions for the SO integrals 
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themselves are quite complicated [3]. A simple overview of the various terms in, 
say, (47) can be given: the A factors represent coefficients of the linearly indepen- 
dent GfaA, etc, in the SOs F~Aai,... [3], and of linearly independent derivatives 
Gf~A in the differentiated SOs. The sum over G in the product of representation 
matrix elements gives selection rules for the SO integral derivatives. It is important 
to realize that (47) is very little more complicated than the formula for SO integrals 
[3]. In particular, the same sets of DCR, R, ~ and 1I-, appear in the integrals and 
their derivatives, and consequently the program loop structure required to gener- 
ate distinct AO integral derivatives and to combine them into SO integral deriva- 
tives will differ only trivially (in the inclusion of the extra A factors and the 
accounting for different selection rules) from that required for distinct AO 
integrals and their combination to give SO integrals. This is discussed further in 
the next section. 

4. Integral derivatives for D2h and its subgroups 

The special case of D2h and its subgroups not only brings great simplifications, 
but is of considerable practical importance, as few program systems explicitly 
use higher symmetries in beyond-SCF calculations. This case is therefore explored 
in some detail here. 

Firstly, it should be observed that D2h and all its subgroups are Abelian and all 
elements are of order two. As noted in Sect. 2 above the transformation matrix 
elements CaaA(U) become p, (U)= +1. The presence of only one-dimensional 
irreps means that any irrep a of ~d ~ D2h is subduced by a single irrep aA of ~. 
The factor A A~ (obtained from (20)) is then zero unless f~A is of the species aA, 
when A A~ = ug -1 [3]. Secondly, 

AR = ]all ~ R~R-1I 

= Jr ~1 (48) 

which is independent of which R is used. AR will therefore be written h~. Also, 
it follows that the stabilizer of R(B), R~R -1, is simply ~F. Finally, it is convenient 
to introduce the symbol Ia~v... which is unity if a | 1 7 4  is the totally 
symmetric irrep and zero otherwise. Note that 

Y~ xa (G)  x x~(G) x x~(G) . . . .  g / ~ . . .  (49) 
o 

We then obtain 

Oo-==(FaA~JOvJF58~) = A~'uvg-2Ia~,~ E pb( R )x~( R ) 
R 

• {~a=U(f~AlO, lfbB)+ ~R(n),~v(fanlOvJf~bn) } (50) 

or the equivalent form 

A ~ l u v g - 3 L # v e  ~, pb(R)xa(R) 
R 

x Z XV( G){t~AEU(f~AI GOG-alfbR(~)) 
G 

+ ~R(B),=v(faA[ GOG-11f~R(8))}. (51) 
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These integrals are non-vanishing only if f ,g is of  symmetry aA, etc. The form 
(51) is especially convenient for the use of translational invariance, as the sum 
of the two integrals in braces in (51) is zero for each G. The reduction from a 
sum over G using a DCD based on the subgroups A/= e//c~ T" and 74/'( = ~) 
(stabilizer of  O) is straightforward [6]. 

For an operator which depends on the nuclear coordinates 

O~E~( Faa~[OcvlFbBi3 ) = A ~l uvg-3la#ee ~ pb( R )x~( R ) 
R 

• ~ xV(G){SAEU(f~AIGOcG-'IfbR(B)) 
G 

-1- t~R( B),EV( faAI GOcG- 'If~bR( B) > 
+ 8ceWX~(G)(faa} GO~ G-lifbR(m)}. (52) 

Again, this could be rewritten in terms of  matrix elements of Ocv and of  O ~ ,  
where 8 = y |  e, but (52) makes the use of  translational invariance more obvious, 
a s  

(f~a] GOcG-~]fbR(B)) + ( fa a]  GOcG -~[f~bR(n)) + P~( G)(faa] GO~ G -1 ]fbR(B)) = O. 
(53) 

A DCD can again be used to eliminate redundant terms generated in the sum 
over G. 

For the two-electron case 

O,~E~ [ faa~fbB~ifcc~,f ao~ ] 
= A~lul)wxg-4I~v~e ~ E ~ x f (R)xV(T)x~(TS)  

R S T  

x Pb (R)p~( T)pa (TS) 

+ 8R(m,Ev[f.nf~g(m]f~T(C)farS(D)] 

+. 8r(c),ew[f~AfbR(m[fYr(c)fars(m] 
"4" ~TS( D),EX[faAfbR( B)IfcT( C)f~TS(D)]}" (54) 

The sum of  the four integral derivatives in the braces in (54) is zero. To see how 
little extra complication in the symmetry processing is introduced as a result of  
differentiating, (54) may be compared with the corresponding SO integral formula 
[3]: 

[ F~A~FbBo [F~crFao~ ] 
= h ~ uvwxg-ZI~va Z ~, E X ~ (R)x ~'( T)X 8 (TS) 

R S T  

x pb(R)p~( T)pa ( TS)[f~afbR(mlf~r(c)fdrs(m]. (55) 

Clearly, there is no difference between (54) and (55) in the loops over DCR 
elements R, S and T, and therefore there will be no difference in the loop structures 
of  programs based on (54) and (55). Only the factors outside the loops and the 
weight factors which appear with each of  the four different integral derivatives 
are different. 
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5. Higher derivatives 

The techniques used in Sects. 3 and 4 can be extended readily to higher derivatives, 
although for arbitrary finite point groups the manipulations are tedious and the 
results lengthy. As a simple example we give the second derivative of an SO 
two-electron integral in D2h symmetry: 

= A ~-~ uvwxg-Sl,~#.r~c ~_, ~., ~_, X ~ (R)x'r( T)X 8 ( TS)pb (R)p~( T)pd (TS) 
R S T  

• {U26AI~aF[fff~AR(B)[fcT(C)fctTS(D)] 

+ UVSAe6R(B),I~[fffAf~R(n)[LT(C)farS(D)] 

+ UW6AE~r(c),~[f2Afb.(mlfST(C)faTS(O)] 

+ UX6AE6rS(D),F[fffAfbR(.)IfcT(C)fJTS(D)] 

-[- Ul)~AF~R(B),E [ f2af~R( .)[fcT( c)fars( o)] 

+ V2~a(m,EaR(B),p[faAf{[~(mlf~r(c)fdTs(D)] 

+ VW6R(m,~6T(C),V[f.Af[R(B)If3(c)f~rS(D)] 

+ UW6A~-~r(c),E[f~AfbR(B)If;T(c)faTs(D)] 

+ VW6R(B),~T(C),E [f.~f~R(B)If$T(C)faTS(O)] 

+ W26T(C).~ar(C),v[f~nfbe(B)lf[;(c)fdTS(O)] 

+ wxar(c).Ears(o),F[f~aAR(B)lf~r(c)fSrs(o)] 

-~ I~X~AI~TS(D),E [fa~fbR(mlLr(c)f a%s(o)] 

+ VXaR(m,~rs(o),E [f~af~,e(B)lLr(c)f2rs(o)] 

+ WXar(C),~rS(O).E[f.Afb.(B)]fSr(c)f~rs(O)] 

+ X=aTS(O),EarS(O),I~[f~AfbR(B)[f~T(C)f~(O)]}. (56) 

For o-= r there are only 10 independendent integral second derivatives out of 
the 16 terms in braces in (56). Further, translational invariance can be used to 
reduce the 16 terms to only 9 (or 10 to 7) [23, 24]. Again, it is clear from a 
comparison of (55) and (56) that the same program loop structure required for 
SO integrals can be used for second derivatives just as for first derivatives. This 
situation will hold in any order of differentiation, although the formulas become 
increasingly complicated, of course. 

6. Conclusions 

Formulas for derivatives of  SO integrals with respect to symmetry-adapted nuclear 
coordinates have been derived in terms of symmetry-distinct AO integral deriva- 
tives. The procedure is applicable to any (finite) point group and to derivatives 
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o f  a n y  order :  the  s a m e  p r o g r a m  s t ruc ture  u s e d  for  s y m m e t r y  p r o c e s s i n g  in  SO 
in tegra l  g e n e r a t i o n  is u s e d  for  der iva t ives .  Fu l l  use  o f  t r a n s l a t i o n a l  i n v a r i a n c e  
can  be  m a d e  w i t h o u t  a n y  m o d i f i c a t i o n  o f  the  p r o c e d u r e .  I t  is thus  poss ib l e  to 
ob ta in ,  s t r a igh t fo rward ly ,  der iva t ives  o f  SO in tegra l s  a n d  t h e n  to t r a n s f o r m  these  
in to  the  M O  bas is  ve ry  efficiently.  I n d e e d ,  the  o n l y  m o d i f i c a t i o n  r e q u i r e d  to a 
s y m m e t r y - b l o c k e d  t r a n s f o r m a t i o n  p r o g r a m  for  h a n d l i n g  in tegra l  der iva t ives  is 

tha t  n e e d e d  to take  a c c o u n t  o f  d i f ferent  s e l ec t ion  rules.  Use  o f  the  resul t s  o f  this  
w o r k  to go d i rec t ly  f r o m  d i s t inc t  A O  in tegra l  der iva t ives  to M O  in tegra l  der iva t ives  
will  be  d e s c r i b e d  e lsewhere .  
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