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A procedure, based on double coset decompositions, is described for reducing
formulas for derivatives (with respect to nuclear coordinates) of integrals over
symmetry-adapted orbitals to symmetry-distinct integral derivatives over
atomic orbitals. The procedure is applicable to any finite point group and to
integral derivatives of any order.
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1. Introduction

The transformation of two-electron integrals from an atomic orbital (AO) to a
molecular orbital (MO) basis is, formally, one of the most time-consuming steps
in beyond-SCF calculations: its N° behavior (for N orbitals) has the highest
power dependence of any step in the calculation, at least if the CI expansion is
of single and double excitation type. Consequently, the exploitation of symmetry
in the transformation is of vital importance in reducing the computational labor,
which then behaves as N,, where N,, is some average of the number of functions
of each symmetry species [1]. Even one element of symmetry can effect an order
of magnitude reduction in the total labor. Most commonly, this exploitation of
symmetry involves the generation of integrals over symmetry-adapted orbitals
(SO) as an intermediate step, using a list of symmetry-distinct AO integrals [1-4].
The transformation is then carried out from the SO basis to the MO basis. It is
also possible to consider a scheme which bypasses the explicit generation of SO
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integrals, going directly from distinct AO integrals to MO integrals but retaining
the advantages of symmetry blocking [5-7]. Whether SO integrals are formed
explicitly or not, formulas for generating them from distinct AQ integrals are
required in developing a computational scheme; such formulas have been devised
by a number of authors [2-4], but the most convenient and most elegant formula-
tion is that of Davidson [3]. The latter work is based on double coset decomposi-
tions (DCD) and it is this approach that we shall follow in the present work.

While the symmetry processing and transformation of integrals has been explored
in detail, there has been much less discussion of the transformation of integral
derivatives. Integrals differentiated with respect to nuclear coordinates are
required in “analytical derivative” schemes for computing molecular properties
such as gradients and force constants (see, e.g. [8-11] and references therein).
In many applications [8, 11-14], MO integral derivatives appear contracted with
reduced density matrices in expressions which can be represented in a simple
way as

LY 2 T Pogrsl palrsY (1)

P g r s
where the prime on the integral indicates differentiation (not necessarily only to
first order) and P is the second-order reduced density matrix. The sum in (1) is
over MO indices. Transforming P into the AO basis gives

Z Z ; Z va)\a'[/““vll\o-]" (2)
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By this means it is possible not only to avoid transforming the integral derivatives
but also, by rewriting (2) in terms of distinct AO integral derivatives only [14],
to avoid having to consider explicitly their symmetry properties. This procedure
is described in detail in [14]. Obviously, this approach can also be used in cases
in which P is a direct product of first-order reduced density matrices, as in SCF
or GVB methods [15].

In expressions for more complicated cases, however, such as those which deter-
mine perturbed MCSCEF or CI wave functions [11], terms such as

Ry =YL X% Poulgrlst] : (3)

r st

arise. This is obviously not the simple index contraction above, and it is not
possible to approach the construction of R, say, in the straightforward manner
of [14]. Indeed, it has recently been suggested [11] that there will be little
alternative to transforming integral derivatives to the MO basis. As a consequence
it is desirable to derive formulas for symmetry-adapted integral derivatives, that
is, SO integral derivatives, in order to reduce the transformation labor as outlined
above.

In order to achieve maximum simplicity in the formulas for SO integral derivatives
we shall employ symmetry-adapted nuclear coordinates. It is simple to obtain
final quantities, such as gradients or force constants, etc. in terms of the original
nuclear coordinates if other computational considerations should require it [16].
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In the following section we define a number of terms and discuss how SOs are
generated from AOs and how differentiation operators act on AOs. In Sect. 3
formulas for one- and two-electron integral derivatives are derived in terms of
distinct AO integral derivatives for any (finite) point group. In Sect. 4 these
formulas are rewritten explicitly for the special case of D,;, and its subgroups:
a number of programs restrict treatment of symmetry to these groups because of
the many simplifications which ensue. Application of the methods of this work
to higher derivatives is considered in Sect. 5 and conclusions are given in Sect. 6.

2. Definitions

In order to take maximum advantage of Davidson’s work on SO integrals [3] we
will use the same notation as far as possible. ¥ denotes the molecular point
group, which is restricted to be finite (of order [4|=g) with elements G. For
each nucleus A, B, C... in the molecule there exists a subgroup of ¥, denoted
U, V, W...such that, e.g.

U_rA———_rAVeru (4)

where r, is the position of A. Such a subgroup is termed the stabilizer of A [17],
the order of the subgroup is denoted wu.

The AO basis is assumed closed under ¥ (this is invariably the case in practice)
and each AO is then taken to be centered on a particular nucleus. The extension
to AOs off the nuclear centers but “following™ [8] (i.e. moving rigidly with)
particular centers is straightforward. The AOs are assumed to be Cartesian or
spherical harmonic Gaussian or Slater functions (that is, a product of a locally
spherically symmetric radial function and some angular part). The ath AO on
center A is denoted f,4; the assumption of closure under ¢ implies that f, 4
transforms as

Ufaa =2 Caaa(Ulfan, Ue U (%)

and

Gfaa =§ CaaA(G)faG(A), GeY (6)

where G transforms A into G(A). Each f;, is an AO with the same radial part
as f, but possibly with different angular properties. For future reference we note
that if 4 is D, or one of its subgroups Cs,4(G) becomes a parity factor which
depends only on the angular type of the AO, not on its center, and can be denoted
Pp.(U) (= =£1). This differs from the notation used by Davidson [3], which appears
to imply A dependence (not a dependence) of the parity factors.

SOs are generated from f,4 by applying projection ( P3;) and shift (P§) operators:
Pi=g 'n, L Di(G)*G, (7a)
G

Pi=g 'n, ¥ D{(G)*G. (7b)
G
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Here D® is one of a set of unitary irreducible representation (irrep) matrices for
irrep a and n,, is the dimensionality of a. By operating with (7a, b) on f, 4 we obtain

Fosoir= P foa (8)

where the SOs of species (e, i) are chosen as a linearly independent subset of
the F, 4. (often by simply fixing on a particular r).

We introduce the double cosets UGV for two subgroups % and ¥ and Ge ¢
[3,18,19]. Double cosets partition ¥ into disjoint sets of elements - a double
coset decomposition (DCD) [19] - in which each element occurs a fixed number
of times (not necessarily only once, as in single cosets) for a particular G. This
degeneracy is given by

Ao =|UnGYG (9)

which is the order of the subgroup % n G¥' G, the stabilizer of the pair of nuclei
A and G(B). That is, any element of % N G¥'G ™" leaves both A and G(B) fixed.
A set of double coset representatives (DCR) [19], denoted R, consists of a set of
operators R chosen one from each distinct double coset: with each R € R there
is a different degeneracy factor Ag given by (9) with G= R. Sums over group
elements G can be replaced by sums over elements of stabilizers and DCR, as in

Pi=g'n, Y'Y Y AR DE(URV)Y*URYV. (10)
UV R
Here and in what follows a sum over R indicates a sum over elements of a
particular set of DCR R.

AO integral derivatives involve differentiation of AOs (or of operators) with
respect to particular nuclear coordinates x,, y4, etc. Denoting the Cartesian
direction by o we use the symbol 9,5, defined as

as a convenient shorthand for the differentiation operator. Such operators are
given in symmetry-adapted form as

aaEsmv =g-1ne Z Dfnv(G)*Gaa-EGhla (12)
G
where ... behaves as an irreducible tensor operator of symmetry species (&, m)

[20]. A set of partner operators for this species is obtained by selecting a linearly
independent subset of the d,g.m, Note that

GaaEG_l = Z CO"O'E(G)a(;E' (13)

Now

doEfas = bardoafoa
= 5AEf :er (14)
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using f,4 for 3,4f.4. Hence
doBemvGfaa= g 'n. ¥, Dio(H)*Ha ,pH 7' Gfya
H

= g_lns Z Dfnv(GH)*GHao-EH—lfaA
H

=g7'n. LY D5 GY* Dip(H)* GHO ogH ™ fon, (15)
Hm
using the rearrangement theorem [20] to replace H by GH in the sum over H. But
Hd,eH 'f,.=0, unless E=A and He U, (16)
hence
60’E£vaf;1A = 6AEg‘lnls 2 Z Z Dfnﬁt( G)*Dfﬁu( U)* C&crA( U) foA' (17)
Uam

For future use we define
ASm=87"n. Y Diu(U)*Cysra(U), (18)
U

using which

ao‘Eemqu;zA = aAE Z Z— Dfnﬁl(G)*Ag;rﬁvatZ\- (19)
Equation (19) and the use of the rearrangement theorem will play a key role in
the elaboration of formulas for SO integral derivatives. The differentiation of

one-electron operators which depend explicitly on the nuclear coordinates is
considered below.

Finally, by analogy with (18), we define for future use

Aaé:Tr( G) = g_lna z D?r(GU)*CﬁaA(GU) (20)
U
and
ARDE(G)=g""ng ¥, D%(GRVR™")*Cgpr(s)(GRVR ™). (21)
Vv

In (21) the sum over V in RVR™! generates elements of R¥VR™’, the stabilizer
of R(B).

3. Derivatives of SO integrals

We first consider the simplest case of integrals over a one-electron operator which
does not depend on the nuclear coordinates. Without loss of generality we can
restrict treatment to symmetry-adapted operators O.,, which transform as irreduc-
ible tensor operators of species (v, k). Differentiation of the SO integral

(FaAair|O’ykt|FbBBjs> (22)
gives
(acrEavaaAairlO-ykt|FbBBjs> (233)

+(FaAm'r‘OykllaaEevabBBjs> (23b)
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We shall proceed by expanding the SOs in (23) in terms of distinct AOs and
then differentiating. The same results could be obtained by differentiating the
SOs and then expanding, of course, but then the algebra becomes somewhat
more complicated. Following Davidson’s treatment [3] for integrals over ‘non-
symmetric operators’ this gives for (23a)

g n Z D (G)(aoEevaﬁAloykthG lFbBﬁjs)
= g n Z Z D (G) (G_1)<80Esmqu;A,O'ykt,GFbBBjs> (24)

Using a DCD we have
Fypgis =8 nB Z 2 Z )\RlDﬁ (UT'RV)*U™'RVfy, (25)

where we have replaced U with U™ in (10). Substituting (25) in (24) gives
g7n.ng LYY Y Y Di(G)DE(G)*AR' DS(UT'RV)*

GUVR7J
X <80'Eemqu;zA|O'yktlGU—1RV.ﬁJB) (26)

Using the rearrangement theorem [20] to replace the sum over G everywhere in
(26) by GU gives

g ’nang LY. Y1 Y D(GU)DE(GU)*

GUVRJ
X AR DI U™ RVY*00£emeGUfan| Oytel GR Vys)
=g n,ng ZZZZZZ A% DH(G)D5(U)D5(G)*Di(RV)*

X Czaa(U)Crop(R V)<aa-Esvaf:iA| OykthfER(B)>
= Z > Z Y2 AR (Afar)*Adh(R) Z Di(G)Di{G)*

a i

X (3 s BemvGfaal Oyktl Gfirs))s 27
using (18) and (20). But from (19)
<60Esmqut.iA| Oykt,G.ﬂ;R(B)> = 5AE Z Dfnrﬁ(G)(A gs'rﬁv)*<Gng|O'ykt| G.ﬁ;R(B))a

m g (28)
giving for (23a)
SAE % Z Z Z Z_ 25: Z AR l(Aaazr)*Abbjs(R)(Aavmu)*
X% D G) D5 G)Y* Dy GU G ia| Oya| G ))- (29)

Now
<Gf£4| O-yktl Gfl?R(B)) = (fal:l G OyktGLﬁ;R(B)), (30)
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and

G_lo'yktG=§ DkE(G_l)*OyEt (31)

by definition [20], so by substituting (30) and (31) into (29) we obtain
aAE z Z Z_ Z Z Z z E AR 1(/\aa!r)*/\bbjs(lz)(A/\O'O'mv)*

b &

XZ D G)Dj(G)*D},n G) Dia GX fanl Oy fir () (32)

Following a similar procedure for (23b) gives finally

aUEsmu<FaAairl Oykt l FbBﬁjs)

= Z z Z Z Z z Z Z AR l(A/\aalr)*lxbb_)s(R)

T kma

XEGZ D3(G)Di{(G)*DE(G)

X {8aeDm( G)(A?;m)ﬂfai' OyEtleR(B)>
+ 6R(B) ED m(G)*Agéglz}E(faA|Oyl?tifl?R(B)) (33)

for the derivative of an SO integral over an operator independent of the nuclear
coordinates. Evidently, the sum over G of the product of representation matrix
elements in (33) gives “selection rules” on the SO integral derivatives. For
example, in the common case of y the totally symmetric irrep « ® £ must contain
B (whereupon B®e contains &) for (33) to be non-vanishing.

In practice, the “translational invariance” of AO integrals (and their derivatives)
[12, 13, 21-24] is used to reduce the number of integral derivatives that must be
calculated. For (33) this means exploiting the relationship

(foalOsie foremy) +{ fual Ol fir(my) = 0. (34)
involving the two AQ integral derivatives.

The case of an operator which depends on the nuclear coordinates is somewhat
more complicated. Instead of O, we consider an operator Oc,,, which is of
symmetry species (v, k) and is constructed from operators on nucleus C (and
its transforms G(C)) according to

Ocyi =g 'n, z D1L(G)*GOG™. (35)
W is the stabilizer of C. In
ao’Eemv(FaAairlOCyktIFbBBjs>

= <80'EevaaAair|OC‘yktlFbBBjs> + (FaAozir‘OC'yktlaa'EemuFbBBjs>

( AmrlaoEsvaCyktlFbBBJs>a (36)
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the first two terms on the RHS may be handled by the technique used above for
the operator O, The third term is expanded by noting that

ao’EstOC'ykt g n n ZZD (H)*DE (J)*JacrEJ_lI_I()CI_I_1
=g nyn, ZZZD:«(H)*D n(H)*D;(J)*HI3,5) " OcH ™.

(37)

Clearly, the operator product Jé,sJ 'O vanishes unless C=E and J€ %, so
that (37) may be rewritten as

SCEg—zn‘yns Z Z z 2 D !(H)*Dfnn(H)*D u( W)* X Co-o‘C(W)HocH_
HWnogé&
=5CEgM1nVZZZ Dth(H)*Dmn(H)*Aa-o-anOgH_ly (38)
Hn o
using the notation OZ for 90/8d. If (38) is inserted in the third term of (36)
and the SOs are expanded as above we find

<FaAair|aoE£vaC'ykt‘FbBBjs>
=8ckg My Z LLT T T ARNAZE)* A (R)AGom, X1 D(G)Di(G)*

T jnaba

XY D(H)* Dipn(H) X Gfaal HOZH ™| G- (39)
This expression may be simplified further by replacing H with GH giving
dceg”'my Z Z Z Z Z Z L L AR (Azar) * A B (R)A 5o
XZ Di(G) D G)Y* DGy D G)*
X%, DL(HY* D HY faal HOZH ™| forcm) (40)

Note that if desired this form could be rewritten in terms of a symmetry-adapted
differentiated operator transforming according to row ks of the direct product
representation y®e.

If (40) is combined with the appropriate form of (33) to give the result of
differentiating the SO, we finally obtain

o'Eemu(FaAatrl OCyktlFbBBjs>

=g 'n, 2 2; )y Z Z Z Z Z AR (AGa)*Agt(R)
x Y. D G)DiHG)*
X {8AEDE(G)* Dy (G) (A i) * % D(H)* faal HOcH ™| fsr(a))
+8r(p),eEDE(G)* Dl GV A SSR % DE(HY faa HOcH ™| ferem)

+6CED (G)*Dfnm(G)*zAaonuzD (H)*D n(H)*

X{ faal HOZH | fyrm))- (41)
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Transformed operators HOH ™! feature in (41) and (implicitly) in (33). In general,
some AO integral derivatives generated by the sum over H will be redundant.
Such redundancies can be eliminated, following Taylor [6], by replacing the sum
over H with a DCD involving % (the stabilizer of C), 4, the stabilizer of the
pair (A, R(B)), and a DCR set T. This is straightforward and will be omitted
here, although it is of interest to point out that for O independent of the nuclear
coordinate W = % and the sum over elements of DCR T reduces to a single term,
which is conveniently taken to be the identity operator.

The use of translational invariance is somewhat more complicated for integral
derivatives involving Oc..,. The appropriate relationship is most easily obtained
by considering the translational invariance of the AQO integral
(H 7 f34l0c|H  fsr(ny), giving

X Cooc (H)X fia HOcH ™| for(8))+ X, Copc (H ) faal HOcH ™| fir(s))

+ (f;iA|HOZ‘H_l|ﬁ;R(B)> =0. (42)

By using (42) it is possible to avoid explicit calculation of matrix elements of
the differentiated operator OF. This is especially convenient when Oc is of
complicated algebraic form (such as certain pseudopotential operators). Note
that in any computationally efficient procedure for generating AO integral deriva-
tives all three Cartesian directions o would be handled together, so all contribu-
tions that might arise in the first two terms of (42) would be available simul-
taneously.

A two electron integral (over the totally symmetric operator r;;) over SOs is
[FaAaierBﬁjle cCykthDélu]a (43)
using charge density notation. Differentiation gives four terms:
[0oEemoFaacirFopajs | FocyeFapsiu)
+[Fa0ird o‘EsvabBBjslFcCykthDBIu]
+ [FaAaierBBjs‘ao—Eeva ey ansiu)
F [ FanairFongjs| Focykid o semoFansi]- (44)
If we expand the SOs'in terms of distinct AOs [3] we obtain

;gzzzzzzzz; AT (AGa A (RYAZL(T))* A S (TS)

Tabecdrjk

Xé Di(G)Dj{G)* Dl G)Di( G)*

X {[aa'Eevaj;‘AG.ﬁ;R(B)iGf;?T(C)GfETS(D)]

+ [ GfandoremsGfsrm| Gfercy Gfars(m)]

+ [ GfaaGfor(m)l00EemvGfir(c) Gfars(m]

+[ GfaaGfsr(m)| Gfercc)dopemeGfarsy I1- (45)
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Here ReR, a set of DCR for subgroups % and ¥, S8, a set of DCR for %W
and & (stabilizers of C and D respectively),and T € T, aset of DCR for subgroups
Mg and N, stabilizers of the pairs (4, R(B)) and (C, S(D)) respectively. Using
{19) the four terms in braces in (45) can be written as

Z_ Z {6AEDr€mﬁ( G)(AQ;MD)*[Gfg-AGﬁR(Bﬂ G.fET(C)Gft.?TS(D)]

+ 8r(8), D5 GV A [ Gfaa Gk Gferccy Gfarscm]
+ 87y, eDienn GUA LSV GfiaGfsr )| Gf ) Gfars(m)]
+ 8150, D e GV A L350 ° 1 GfaaGforcmy| Gferic) Gffrscoy 1} (46)

The operation of G in the integral derivatives is simply to transform all four
functions appearing in the integral simultaneously, and thus leaves the value of
the integral unaffected. Eliminating these operators and substituting (46) into
(45) gives

crEsm[FaAaierBBjs|FcCyledD6 lu]

=LLEAT ZZZZZZZZZZ(A‘% *

RST

bb]s(R)(Acckt(T))*Addlu(TS)
xg‘Dir(G) jj(G)*D (G)D (G)*

X {BAD 5 GYA b8 L finSoreml feror farsm]

+ 8r(m), ED ol GV ASSoN U faafir(ml for(o farsm))

+ 5T(C),5Dfmﬁ(G)(A;Sg_zze)*[ﬁmﬁm(a)'fa&T(C)fETS(D)]

+ 8150y D GY* AL * faaSoreml ferio) s 1} (47)

Alternatively, (47) can be obtained by applying G~ to the four integral derivatives
in braces in (45), followed by expanding as in (46).

In both the one- and two-electron integral derivatives we have tacitly ignored
the possibility that { £,4} = {fos}, etc. In such cases the stabilizers can be expanded
and the set of DCR required in a given case can be decreased. Full details are
given by Davidson [3]. In addition, the number of independent integral derivatives
is reduced by translational invariance [12, 13,21-24]: the sum of the four AO
integral derivatives appearing in the expression in braces in (47) is zero. Of
course, the number of independent terms is reduced even further when nuclear
centers coincide [21]. Clearly, the use of translational invariance to reduce the
number of independent terms to be computed fits very simply into the symmetry
treatment, just as for the one-electron cases discussed above. We have not
considered additional savings arising from exploitation of rotational invariance
[22-24], as this would introduce considerable complications - it should be noted,
however, that in practice rotational invariance is usually invoked after derivatives
have been contracted with reduced density matrices [23].

The final derivative expressions, (33), (41) and (47), may appear somewhat
forbidding - this is hardly surprising given that the expressions for the SO integrals
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themselves are quite complicated [3]. A simple overview of the various terms in,
say, (47) can be given: the A factors represent coefficients of the linearly indepen-
dent Gf;4, etc, in the SOs F,a., - .- [3], and of linearly independent derivatives
GfZ4 in the differentiated SOs. The sum over G in the product of representation
matrix elements gives selection rules for the SO integral derivatives. It is important
to realize that (47) is very little more complicated than the formula for SO integrals
[3]. In particular, the same sets of DCR, R, S and T, appear in the integrals and
their derivatives, and consequently the program loop structure required to gener-
ate distinct AO integral derivatives and to combine them into SO integral deriva-
tives will differ only trivially (in the inclusion of the extra A factors and the
accounting for different selection rules) from that required for distinct AO
integrals and their combination to give SO integrals. This is discussed further in
the next section.

4. Integral derivatives for D,, and its subgroups

The special case of D,, and its subgroups not only brings great simplifications,
but is of considerable practical importance, as few program systems explicitly
use higher symmetries in beyond-SCF calculations. This case is therefore explored
in some detail here.

Firstly, it should be observed that D,; and all its subgroups are Abelian and all
elements are of order two. As noted in Sect. 2 above the transformation matrix
elements Cz,4(U) become p,(U)==+1. The presence of only one-dimensional
irreps means that any irrep a of ¥< D,, is subduced by a single irrep a4 of %.
The factor A2* (obtained from (20)) is then zero unless f,, is of the species a,,
when A2* =ug™ [3]. Secondly,

Ar=|U~RYR|
=|Un Y| (48)

which is independent of which R is used. Ax will therefore be written Ag. Also,
it follows that the stabilizer of R(B), R¥R™, is simply ¥. Finally, it is convenient
to introduce the symbol I,g, which is unity if «®B®y- - is the totally
symmetric irrep and zero otherwise. Note that

%X“(G)XXB(G)XXY(G) 0= glag,... (49)

We then obtain
aa’Es(FaAaio'ylFbBB> = A&luvg_zlalsye % Pb(R)XB(R)

X {Baxtt(foal Oyl fop) + 8r(8),60{ faal Oy | f76)} (50)
or the equivalent form

Alfgluvg‘slaﬂ'ye % Pb(R)XB(R)
X é x7( G){SAEu<fZA‘ GOG_llﬁvR(B)>

+ 8RBy, 50 fua| GOG | fir()}- (51)
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These integrals are non-vanishing only if f,, is of symmetry @,, etc. The form
(51) is especially convenient for the use of translational invariance, as the sum
of the two integrals in braces in (51) is zero for each G. The reduction from a
sum over G using a DCD based on the subgroups M=%V and W(=%)
(stabilizer of O) is straightforward [6].

For an operator which depends on the nuclear coordinates
ao’Ee<FaAa|OC'yIFbBB> = Aﬂgluvgg?,IaBys ;Pb(R)XB(R)

X(Z; x7(GHS4su{f 24l GOG ™| for(a))

+ 8r(m), 60 faal GOG ™| forcny)
+8cewx( G)(f;zA‘ GO¢ Gﬂ‘be(B)»- (52)
Again, this could be rewritten in terms of matrix elements of O¢, and of O,

where § = y® g, but (52) makes the use of translational invariance more obvious,
as

R e A
53

A DCD can again be used to eliminate redundant terms generated in the sum
over G.

For the two-electron case
aa—Ee[FaAanBB|FcC'deD6]
= A7 uowxg *Lg,s % % ; X2 (R)x"(T)x°(TS)

X pp(R)p(T)pa(TS)

X {SAEu[ngbe(B)‘ch(C)deS(D)]

+ 8rem), sV fuaf Eremyl foro) farsp)]

+8r(cy.6WL faaSorem| forcerfars(o)]

+ 81s(oy, X fuaforem| forcorfdrscmn}- (54)
The sum of the four integral derivatives in the braces in (54) is zero. To see how
little extra complication in the symmetry processing is introduced as a result of
differentiating, (54) may be compared with the corresponding SO integral formula
3]

[ FasaFonpl| FecyFaps]
= A7 uowxg " Logys LiX xP(R)x"(T)x°(TS)

X po(R)p(T)pa( TS)[f;:Aﬁ)R(B)'ch(C).ﬁiTS(D)]- (55)

Clearly, there is no difference between (54) and (55) in the loops over DCR
elements R, S and T, and therefore there will be no difference in the loop structures
of programs based on (54) and (55). Only the factors outside the loops and the
weight factors which appear with each of the four different integral derivatives
are different.
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5. Higher derivatives

The techniques used in Sects. 3 and 4 can be extended readily to higher derivatives,
although for arbitrary finite point groups the manipulations are tedious and the
results lengthy. As a simple example we give the second derivative of an SO
two-electron integral in D,, symmetry:

a-ngao'Es[FaAuFbBBchCdeDS]
= A7 uowxg " Lugyser L% ; x?(R)x"(T)x*(TS)ps(R)pT)pa(TS)
R S

X {u26AE5AF[fZZﬁ;R(B)lJ‘;T(C)deS(D)]

+ UU8A55R(B),F[ngng(B)lch(C}deS(D)]

+ “W5A55T(C),F[ngﬁ:R(B)leT(C)ﬂiTS(D)]

+ ux8 4 p81s(my, L fanforcm| forcor farscoy]

+ uvd o pBr ), 6l faa S Srem| forcr fars(y)

+ 025R(B),55R(B),F[ﬁmfg§(s)'fcr(c)ﬁiTS(D)]

+ oWdg gy, 587 (c), FLfaaSirem| forcefars(m]
+ UxaR(B),E5TS(D),F[ﬂAng(B)Ich(c)fZTS(D)]
+ “W5A1:5T(C),E[fZAﬁaR(B)IfZTT(C)deS(D)]

+ 0Wlr (), FOT(C),E [ﬂzAfZR(B)fffr(C)deS(D)]
+ w26T(C),E8T(C),F[ﬁzAﬁJR(B)'fg;:(C)des(D)]
+ Wx81(cy,601s(py, Fl fanSorem)| fercc) fars(p)]
+ ux8sdrs(py el faaforem|firccy farsim]

+ 0X8g(p),FOrs(p),E[ faafor(m)| ferior farsio)]
+wxbrc), mOrs(py.l faaSorem| firce) farsiom]
+X*81s(p), 81s(0), FLfanSforem | forco) [ 5 1} (56)

For o= 7 there are only 10 independendent integral second derivatives out of
the 16 terms in braces in (56). Further, translational invariance can be used to
reduce the 16 terms to only 9 (or 10 to 7) [23,24). Again, it is clear from a
comparison of (55) and (56) that the same program loop structure required for
SO integrals can be used for second derivatives just as for first derivatives. This
situation will hold in any order of differentiation, although the formulas become
increasingly complicated, of course.

6. Conclusions

Formulas for derivatives of SO integrals with respect to symmetry-adapted nuclear
coordinates have been derived in terms of symmetry-distinct AO integral deriva-
tives. The procedure is applicable to any (finite) point group and to derivatives
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of any order: the same program structure used for symmetry processing in SO
integral generation is used for derivatives. Full use of translational invariance
can be made without any modification of the procedure. It is thus possible to
obtain, straightforwardly, derivatives of SO integrals and then to transform these
into the MO basis very efficiently. Indeed, the only modification required to a
symmetry-blocked transformation program for handling integral derivatives is
that needed to take account of different selection rules. Use of the results of this
work to go directly from distinct AO integral derivatives to MO integral derivatives
will be described elsewhere.
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